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Abstract—Optically active seleno- and telluro amino acids can be synthesized from serine via its b-lactone with selenides and tellu-
rides under overall retention of the serine stereochemistry. Boc-protected LL-selenolanthionine, LL-tellurolanthionine, LL-selenocystine,
LL-tellurocystine and LL-tellurocysteine derivatives can be obtained in good yields.
� 2005 Elsevier Ltd. All rights reserved.
In biochemistry, organochalcogenides gain increasing
interest beyond the obvious importance of the proteino-
genic sulfur amino acids cyst(e)ine and methionine, and
more recently selenocysteine.1,2 In recent years, it was
shown that various selenium and tellurium compounds
can function as antioxidants, chemoprotectors, apopto-
sis inducers, and effective chemopreventors in a variety
of organs, including brain, mammary gland, liver, skin,
colon, lung, and prostate.3–5 In comparison to sulfur
compounds, the corresponding selenium analogues were
more effective in cancer prevention.6,7 Tellurium com-
pounds were shown to be much more effective antioxi-
dants and chemoprotectors than their corresponding
selenium and sulfur analogues.5,8

The most important group of selenium and tellurium
compounds with interesting biological properties is
derived from the higher chalcogenide cysteine analogues
and derivatives (Fig. 1), such as selenocysteine (Sec, U,
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Figure 1. Chemical structures of selenocysteine 1 (Sec, U; R = H), Sec-conju
and Tec-conjugates 3 (R5H), like Te-lanthionine 4.
1 with R = H), selenocystine, selenolanthionine (2),
and selenocysteine-Se-conjugates [(R)Sec, 1]; and the
analogous tellurium compounds (3 and 4). Especially,
the latter ones are almost unexplored with respect to
both synthesis and biological properties.

Selenocysteine (Sec) usually is considered the 21st natu-
ral amino acid. It is encoded in DNA and has a special
function in a number of naturally occurring proteins.2,9

Vermeulen and co-workers10 reported that tellurocys-
teine Te-conjugates in particular Te-Phenyl-LL-tellurocys-
teine (cf. compound 8) might be an interesting prodrug
for the formation of biologically active tellurols.

Despite the increasing importance of selenium and tellu-
rium analogues of sulfur amino acids, very few methods
are available for their production. The synthesis is com-
plicated by facile decomposition, especially by oxidation
to form, for example, higher oligochalcogenides (e.g.,
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R-(Se)n-R) and Se- or Te-cystine. This constitutes prob-
lems if the unprotected form is required for further syn-
thesis, for example, of peptides. We wanted to develop
short syntheses of optically active N-t-Boc-protected LL-
Se- and LL-Te-cystine as ready precursors to the reduced
forms Sec and Tec, respectively, to Se- and Te-lanthio-
nine, and to Sec- and Tec-conjugates, which can be
deprotected on demand.

Previously reported syntheses of LL-Se-cystine and
-lanthionine describe an overall yield of 55% and 41%,
respectively.11 Apart from the moderate yields, the use
of an excess of hydrogen selenide for the preparation
of one of the starting materials (sodium hydrogen sele-
nide) is highly impractical for labeling purposes and
with respect to safety. Another synthesis of selenocys-
teine and tellurocysteine is based on suitably protected
aziridine carboxylates,12 or b-haloalanines.13 For exam-
ple, for the latter approach Boc-protected serine methyl
ester was converted into iodoalanine methyl ester via its
tosylate and reacted with lithium diselenide or lithium
ditelluride to afford the protected selenocystine or tell-
urocystine derivatives, respectively. The overall yields
of deprotected LL-selenocystine and LL-tellurocystine from
Boc-protected serine methyl ester were 47% and 14%.
Unfortunately, the yields of this multistep synthesis do
not transfer to scale-up procedures. Van der Donk
and co-workers14 reported an alternative synthetic
route to selenocystine and Fmoc-Se-phenylselenocys-
teine with three orthogonal protecting groups for the
amino, carboxylate, and selenol function. The four-step
sequence provided doubly protected Sec in 61% yield
and N-protected (Ph)Sec in 37% overall yield on a 15 g
scale.

As part of our study program of higher organochalco-
genides,15 we decided to improve the synthetic route
to selenocysteine Se-conjugates and tellurocysteine Te-
conjugates with respect to the number of steps and
scale-up. Our synthetic strategy is based on a previously
reported similar method for the generation of the
unnatural amino acid (Se-phenyl)selenocysteine [(Ph)Sec]
by ring opening of Boc-LL-serine b-lactone 6.16 Vederas
and co-workers reported an efficient synthesis of b-
lactones under Mitsunobu conditions.17 Both proce-
Scheme 1. Yields are for crystallized compounds (M = Li or Na). Acidificat
dures produce N-(t-Boc)-b-lactone in high yield—84%
from N-(t-Boc)-DD-serine and 72% from N-(t-Boc)-LL-
serine 5—and can be ring opened by nucleophiles to
form b-substituted a-amino acids.

In order to demonstrate the wider scope of this ring
opening reaction, we investigated the possibility of
transforming a serine b-lactone18 with several selenium
and tellurium anions to the corresponding seleno- and
tellurocysteine derivatives (Scheme 1). LL-Selenolanthio-
nine 7a and LL-tellurolanthionine 7b are readily pre-
pared using dilithium chalcogenides (Li2Se and Li2Te)
available from the reaction of elemental selenium or
tellurium with lithium triethyl-borohydride (super
hydride).19 Furthermore, using dilithium dichalcoge-
nides (Li2Se2 and Li2Te2), LL-selenocystine 9a and LL-tell-
urocystine 9b are obtained in good yields (Scheme 1).
For the preparation of tellurocysteine conjugates, for
example, 8, the monoaryl- and monoalkyl telluride
anions, produced by the reduction of the corresponding
ditellurides with sodium borohydride, can be employed
as nucleophiles. However, non-aromatic (R)-Tec-com-
pounds are very sensitive, especially Te-cystine and
Tec itself.

Thus, the most difficult task in the whole procedure is
the purification. Selenium compounds tend to contain
elemental selenium or mono-, di-, or oligoselenide
impurities. The non-aromatic Te compounds are air,
light, base, and electrophile sensitive and decompose
on prolonged exposure to silica. They can be cleaned
to some extent on RP-18 or similar material. Eventu-
ally, direct crystallization of the alkaline metal salts of
the telluro- and selenocysteine derivatives 7 and 9
proved best with respect to purity, at the same time
giving acceptable yields. Ph-Tec-compound 8 also can
be crystallized, but shows co-crystallization of di-
phenylditelluride. Free acids 7–9 (R = H) can be obtained
by acidification with hydrochloric acid and rapid
extraction.20

In summary, we have developed an efficient and versatile
synthesis of optically active seleno- and telluro-deriva-
tives of cysteine, cystine, and lanthionine from serine,
using simple reactions with good yields.
ion to pH � 2 with HCl provides free acids (R = H, limited stability).
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crystallized material, 2 mL degassed water and hydrochlo-
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11.4 Hz, CHACHB), 5.12 (br m, CH), 8.31 (d, J = 7.6,
NH).


	Stereoselective synthesis of Boc-protected l-seleno- and tellurolanthionine, l-seleno- and tellurocystine and derivatives
	Acknowledgements
	References and notes


